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Introduction

o O O DO

U

Besoin de réferences de fréquence / temps de tres hautes performances ET
de moyens de transfert & dissémination

Le Systéme
international dunités
The Internationa

Métrologie fondamentale : unités S, TAI, UTC 5 S I
Ranging, positionnement, navigation inertielle, GNSS
Synchronisation de réseaux : DSN, VLBI, ...

Physique fondamentale : tests de relativite restreinte,

dérive des constantes fondamentale (da/a < 3. 10-17/an),

mesure du décalage gravitationnel (70 ppm avec GPA ;
2 ppm avec ACES), ...

Géodésie relativiste ( % =10 /m )

Astronomie (datation des pulsars)
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Mesure du temps avec un phénomene périodique

- On mesure une duree en comptant le nombre d’oscillations

Signal

= i

Comptage

RPNWhA~

v

Qualité de la mesure d'un intervalle de temps

gualité de la frequence de I'oscillateur
&
nombre de périodes mesurées
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Importance de la frequence d’oscillation

- Intérét d’avoir —[\
une grande fréquence

_ l‘ HH |




Principe de fonctionnement
d’'une horloge atomique

correction
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Frequence delivréee par I’horloge

f=T[1+e+y(t)]

VAR U

Fréquence Frequence Biais de Bruit de
délivrée par de résonance frequence frequence
I”’horloge ideale

- (in)stabilité :

Amplitude des fluctuations y(t) (caracterisée par I’ecart-type o,(t))

- (in)exactitude :

Incertitude sur la valeur de ¢
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Stabilité de frequence d’une horloge atomique

2 2 2 2
Oy_cLock (r)=0 y—QUANT (r)+o y—"DICK" (r)+o y— Instrufmen (7)
Limite Bruit di a Bruits
quantique I’oscillateur Instrumentaux

Phénomene de repliement de spectre du bruit de fréguence
de I'oscillateur (effet d’échantillonnage)

-> Dégradation de la stabilite de frequence

. Besoin de développer des oscillateurs ultrastables :

- Oscillateurs a quartz
- Oscillateurs saphir cryogéniques
- Lasers stabilisés sur des cavités de tres haute finesse|
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Stabilité de fréquence - Bruit blanc de frequence

a/Q/ (7)

Largeur de la raie de
résonance :

Af oc T

observation

- Atomes froids

—> Piégeage

A 1

Frequence de
résonance :

- Augmenter la
fréquence (horloges
optiques)

Nombres de mesures
élémentaires

Rapport Signal/Bruit
(dans une bande de
UTeyee)

— Chasse au bruit !
- Limite quantique :

S/B \/nbre d'atomes
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Stabilité de frequence et stabilité en temps
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Stabilité en frequence o, (1)
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- L’'exactitude et la stabilité long-terme sont limitées par les effets systematiques
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Effets systematiques

long terme (controle insuffisant) et I’exactitude de

f Les effets systématiques influencent la stabilité a
I"horloge (connaissance insuffisante)

— Déplacements de fréquence intrinséques a I’horloge :
» Effet Doppler (1er ordre, 2nd ordre, effet de recul)

» Champs électromagnétiques externes (environnement, champs de piégeage,
rayonnement du corps noir)

» Collisions

» Effets instrumentaux (électronique, cables, ...)

+ Effets relativistes

(apparaissant lorsqu’on compare les fréquences de 2 horloges dans des référentiels difféerents)
13
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Les meilleures horloges micro-ondes :
les fontaines a atomes froids







Bilan d’exactitude

Estimation des biais de fréquence dépendant de parametre(s) et extrapolation a « effet nul »

Incertitude soit sur la mesure du parametre soit sur la « précision » du modele / calcul

Effets systématiques Offset relatif Incertitude

(x 10-18) relative (x 10-16)
Effet Zeeman du 2"d ordre 1920.4 0.1
Rayonnement Corps Noir -168.7 0.6
Collisions + pulling cavité -129.3 1.3
Effet Doppler résiduel 0.0 3.0
Recul 0.0 1.4
Coupl. rés. autres 0.0 0.1
transitions
Fuites micro-ondes, pureté 0.0 0.5
spectrale, perturbations
synchrones
Collisions avec le gaz 0.0 0.5
résiduel
Total 3.8

Conférence du Bureau des Longitudes, 1¢ février 2012



Le futur des horloges micro-ondes

- Fonctionnement dans I’espace en microgravite :
ACES/PHARAO (2015 sur ISS), STE-QUEST (Cosmic Vision, en 2023 ?)

- Horloges sur puces avec des atomes piégés

Temps de cohérence record

Possibilité d’utiliser des condensats de Bose-Einstein

— Horloges miniaturisées pour les GNSS (horloges
spatiales ou intégrées dans les récepteurs)
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Au-dela des horloges micro-ondes :
les horloges optiques

Horloges a réseaux optiques
d’atomes neutres

© Nbre important d’atomes (S/B)

® Contrble du déplacement diu au
piegeage optigue (= longueur d’'onde
magique)

Horloges aions

@ Petit nombre d’ion(s) (S/B faible)

© Bon contrble des champs
piégeants et de I'environnement

+ Mesures tres précises des fréguences

. optiques avec des peignes laser fs
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Evolution des performances
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Les meilleures horloges optiques
lon / Atom Clock y) Estimated sys. ‘
T F Endcap
transition nm Freq.uncert.

27A|+i0n 180— 3I30 267 9X1O-18 c}:{licrl%rodc
199Hg+ ilon 281/2— 2D5/2 282 2X10_17 Endcap
87Sr in sy =3Py 698 1.6x10°1°
lattice
171y b in sy =3Py 578 3.4x10°16
lattice
171y p*ion 2S 1/, — 2D3j 436 4.5x10°1®
0ca* ion 2S1/2— 2Dy 729 2.4x10°1°
88g5r* jon °S = “Dem 674 3.8x10°%°
“°%Ca atom 15, - 3P, 657 7.5x10%°
171y b *ion "Bim= "B 467 1.8x10°*
15m*ion 15, - 3P, 237 1.8x10°13
199.200H g in 'Sy - *Po 266
lattice

Single ion clock




Le futur des horloges optiques

- Horloges optiques dans I'espace
Meilleur contrGle de I’environnement, des vibrations

Connaissance du potentiel de gravitation (102 > 1 cm) "

- Transitions nucléaires (?2°Th @ 160 nm):

Meilleure immunité aux champs e-m externes

Intérét de ces transitions pour les tests de
physique fondamentale
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Transfert de temps et/ou de frequence

Deux types de transferts entre horloges distantes :

d Transfert de frequence (syntonisation)
Comparaisons de fréguence, tests de physique fondamentale,
étalonnage en fréquence des échelles de temps atomique, geodeésie
relativiste, etc...)

-> repose sur la stabilité en temps du lien
d Transfert de temps (synchronisation)
(construction d’échelles de temps atomique, télémétrie une voie, etc...)

-> repose sur la stabilité en temps du lien et sur la calibration
absolue des délais (« exactitude en temps »)

22
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Effets affectant le transfertde T/ F

(%@ G Point de référence
V

— Instrument spatial
Multi-trajets é
X v a N
A i lonosphere i
i troposphére i
R s

Instrument sol

(X) o Point de référence

D

Retard troposphérique (température,
humidite)

Délai ionosphérique (contenu
électronique total, varie comme 1/f2)

Multi-trajets (distance et reflectivite
des réflecteurs parasites)

Effets instrumentaux (amplitude et
fréequence des sighaux, effets
géométriqgues d’antennes, ...)

Effets relativistes : effet Doppler du
ler & 2nd ordre, effet Sagnac,
décalage gravitationnel (positions et
vitesses relatives des horloges)
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Types de mesures

Signaux pulsés P

- Datation des instants d’émission et de

réception d’'impulsions @3\

Sighaux continus

Carriar at 1575.42 MHz (L1)

pseudo aléatoire recgu et le code local

19 em (L1)

, cpp - 1227.60 MHz (L2) .

- Mesure du déphasage / différence de |
fréquence entre la porteuse recue et le U |
signal de référence local i |
Code at 1.023 Mcps (C/A) e I
10.23 Mcps (P(Y]) N :
> Mesure du déphasage entre le code ] | || | 1 ‘
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Comment ameliorer les performances d’un
transfert de temps

Stabilité en temps :

Q Mesure plus précise de la différence de phase :
- augmentation de la fréquence de la porteuse
- augmentation de la fréquence du code pseudo-aléatoire

d Correction des fluctuations des retards de propagation
(distance géometrique, troposphere, ionosphere) :
- tres bonne connaissance des positions des deux horloges (orbitographie)
- configuration « 2 voies » (aller-retour)
- modele atmosphérique plus précis
-> fonctionnement multi-fréquences pour la déetermination du contenu
électronique total

« Exactitude » en temps :

dMeilleure calibration des délais de propagation :
- modele atmosphérique plus précis
-> meilleure calibration instrumentale, stations transportables



Transferts T/F avec des porteuses micro-ondes

Technique Performance Commentaires
GNSS 1 voie Bruit en temps < 100 ps Gain avec les combinaisons
Multi-frég. | Comparaison de fréq. <105 @ 1j | GPS, GALILEO, etc...
1 GHz « Exactitude » en temps : qq ns
1 MChip/s
TWSTFT 2 voies Time noise < 100 ps Uniqguement pour les
« code » Moogo'fféQ- Comparaison de fréq. < 105 @ 1 j Zﬁ@g:ﬁ;‘:;ﬁg:o”oges sol
_ 10 GHz ' -
(satellite | « Exactitude » en temps : 1 ns
. 10 MChip/s
geo)
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Performances des transferts / horloges
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Transferts T/F avec des porteuses micro-ondes

Technique Performance Commentaires
GNSS 1 voie Bruit en temps < 100 ps Gain avec les combinaisons
Multi-frég. | Comparaison de fréq. <105 @ 1j | GPS, GALILEO, etc...
1 GHz « Exactitude » en temps : qq ns
1 MChip/s
TWSTFT 2 voies Time noise <100 ps Uniquement pour les
« code » Mono-fréq. | Comparaison de fréq. <105 @ 1 j comparaisons d’horloges sol
(satellite 10 GHZ_ « Exactitude » en temps : 1 ns envue commune
L 10 MChip/s
geo)
TWSTFT 2 voies Bruit en temps : 1 ps Uniqguement pour les
cphase » | [one-fie | Compar.deiéa ~aq 107@ 1) | comparaisons d horoges so
(satellite 10 MChip/s « Exactitude » en temps <1ns
geo)
ACES /MWL | 2voies Bruit en temps <1 ps Comparaisons d’horloges sol
(on 1SS) Multi-fréq. Compar.de fréq~qq 107 @ 1 | Eg%;ﬁfﬂ%@?\%?gi? IeStSngn-
(2 voies : 1806MHCZ:hip/s « Exactitude » en temps ~ 100 ps vartir de 2015)
Multi- Seul lien 2 voie permettant de
fréquences) déterminer le CET
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Liens optiques pulseés
(T2L2 sur Jason 2 et ELT pour ACES sur ISS)

- Lien laser pulsé 2 voies On-board Clock

Corner Cube -

- Datation des impulsions au sol et dans Detection optics
I'espace

Detection unit / Timing

- Stabilité en temps ~ 1 ps

Ground Clock

- Exactitude en temps < 100 ps

- Comparaisons de fontaines a atomes froids
en vue commune entre 'OP et 'OCA

Laser Ranging Station
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Liens optiques cohérents
- Propagation libre

- Lien laser continu 2 voies

- Mesure de la phase de la porteuse optique (300 THz) a chaque extrémité

- Stabilité en temps ~ 10 - 100 fs
- Comparaisons de frég. ~ 1017 @ 1000s, 1018 @ 1day

- Exactitude en temps : ??7?

Problemes des techniques optiques en propagation libre :
- Requierent des stations laser spécifiques

- Ne fonctionnent pas par tous les temps
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Liens optiques cohérents
- Propagation guidée dans une fibre

- Lien laser continu 2 voies

- Mesure de la phase de la porteuse optique (200 THz) a chagque extrémité

- Utilisation d’une fibre dédiée ou d’un canal dedié d’un réseau internet
existant comme RENATER - Solution développée en France et déeploiement
national grace a I’équipement d’excellence REFIMEVE

- Stabilité en temps ~ 10 - 100 fs
- Comparaisons de frégq. ~ 1018 @ 104s ; 101° @ 1day for ~ 500 km

- Exactitude en temps : qgs centaines de ps (préliminaire)

31
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Développements de liens fibrés

e JILA-NIST (USA) : optical carrier phase, frequency comb transfer

e SYRTE - LPL (Fr) microwave, optical carrier phase

e NICT, NMI1J, UT (Japan) optical carrier phase & microwave
e NPL (GB) frequency comb, optical carrier phase

e NIM, SIOM Shangai (China) microwave optical link

e INRIM (ltaly) optical carrier phase

« UWA,NMI (Australia) optical carrier phase & microwave

Poland-Germany fibre link

Conférence du Bureau des Longitudes, 1¢ février 2012
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Vers un réseau fibré métrologique en Europe ?
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Conclusions

- Ameéliorations tres rapides des horloges atomiques : grace aux methodes
optiques, des incertitudes de fréguences au niveau de 10-18 devraient étre
atteintes au cours de la prochaine déecennie

- Bonne complémentarité et synergie entre les développements pour les
applications sol et spatiales

- Développements en parallele de nouveaux concepts instrumentaux (sous-
systemes ou instruments dérivés, ...) utilisés pour d’autres applications
(detection des ondes de gravitation, capteurs inertiels, géophysique, ...)

- Besoin de poursuivre les efforts de développements et déploiement de
techniques de transfert de T/F pour atteindre des bruits sub-picoseconde (10-18
en frequence) en combinant des méthodes optiques / micro-onde en
propagation libre / guidée avec des applications variées : comparaisons
d’horloges sol et/ou spatiales, vols en formation, constellations GNSS
autonomes.
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