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Introduction



 
Métrologie fondamentale : unités SI, TAI, UTC



 
Ranging, positionnement, navigation inertielle, GNSS



 
Synchronisation de réseaux : DSN, VLBI, …



 
Physique fondamentale : tests de relativité restreinte,
dérive des constantes fondamentale (

 
< 3. 10-17/an), 

mesure du décalage gravitationnel (70 ppm avec GPA ; 
2 ppm avec ACES), …



 
Géodésie relativiste (                           )



 
Astronomie (datation des pulsars)

Besoin de références de fréquence / temps de très hautes performances ET 
de moyens de transfert & dissémination

m
f
f /10 16


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 On mesure une durée en comptant le nombre d’oscillations

Signal 
physique

Comptage

1
2
3
4

t

t

Qualité de la mesure d’un intervalle de temps 
= 

qualité de la fréquence de l’oscillateur
&

nombre de périodes mesurées

Mesure du temps avec un phénomène périodique
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

 
Intérêt d’avoir 

une grande fréquence

Importance de la fréquence d’oscillation

t

t

f  [Hz]1 103 106 109 1012 1015

mécaniqueOscillateur  quartz micro-onde laser
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Principe de fonctionnement 
d’une horloge atomique

OSCILLATEUR
Fréquence f : 

Instable

Inexacte

f

f
f

E2

E1

h f0 = E2 – E1

REFERENCE 
«ATOMIQUE»

f0 f

ASSERVISSEMENT

correction
Fréquence f : 

Stable

Exacte
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f = f0 [1 + 
 

+ y(t)]

Fréquence 
délivrée par 

l’horloge

Fréquence 
de résonance 

idéale

Biais de 
fréquence

Bruit de 
fréquence

 (in)stabilité :

Amplitude des fluctuations y(t) (caractérisée par l’écart-type y ())

 (in)exactitude :

Incertitude sur la valeur de 

Fréquence délivrée par l’horloge
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22  alInstrumentyDICKyQUANTyCLOCKy  
Limite 

quantique
Bruit dû à 

l’oscillateur

Phénomène de repliement de spectre du bruit de fréquence 
de l’oscillateur (effet d’échantillonnage)

 Dégradation de la stabilité de fréquence

Besoin de développer des oscillateurs ultrastables :

- Oscillateurs à quartz
- Oscillateurs saphir cryogéniques
- Lasers stabilisés sur des cavités de très haute finesse

Bruits 
instrumentaux

Stabilité de fréquence d’une horloge atomique
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mesures
QUANTy NNSf

f 1
/
1)(

0


 

Stabilité de fréquence - Bruit blanc de fréquence

Largeur de la raie de 
résonance :

Atomes froids

 Piégeage

nobservatioTf 1 Fréquence de 
résonance :

 Augmenter la 
fréquence (horloges 
optiques)

Rapport Signal/Bruit 
(dans une bande de 
1/Tcycle ) :

 Chasse au bruit !

 Limite quantique :

atomesdnbreBS '/ 

Nombres de mesures
élémentaires
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Stabilité de fréquence et stabilité en temps

10-1 100 101 102 103 104 105 106 107

10-16

10-15

10-14

10-13

 

 

 y
(

)

 [s]
10-1 100 101 102 103 104 105 106 107

0,1

1

10

100

 

 

 x
(

)  
[p

s]

 [s]

-1/2 +1/2

 L’exactitude et la stabilité long-terme sont limitées par les effets systématiques

Stabilité en fréquence y () Stabilité en temps x ()
dt
dxy 
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Effets systématiques
Les effets systématiques influencent la stabilité à 
long terme (contrôle insuffisant) et l’exactitude de 
l’horloge (connaissance insuffisante)

 Déplacements de fréquence intrinsèques à l’horloge :

 Effet Doppler (1er ordre, 2nd ordre, effet de recul)



 
Champs électromagnétiques externes (environnement, champs de piégeage, 

rayonnement du corps noir)

 Collisions

 Effets instrumentaux (électronique, câbles, …)

+ Effets relativistes
(apparaissant lorsqu’on compare les fréquences de 2 horloges dans des référentiels différents)
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Exactitude : 2-3 x10-16

Stabilité : ~ 10-16 @ 1 jour

Les meilleures horloges micro-ondes : 
les fontaines à atomes froids
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Estimation des biais de fréquence dépendant de paramètre(s) et extrapolation à « effet nul » 

Incertitude soit sur la mesure du paramètre soit sur la « précision » du modèle / calcul

Bilan d’exactitude
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 Fonctionnement dans l’espace en microgravité : 
ACES/PHARAO (2015 sur ISS), STE-QUEST (Cosmic Vision, en 2023 ?)

Le futur des horloges micro-ondes

 Horloges sur puces avec des atomes piégés 
Temps de cohérence record

Possibilité d’utiliser des condensats de Bose-Einstein

 Horloges miniaturisées pour les GNSS (horloges 
spatiales ou intégrées dans les récepteurs)
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+ Mesures très précises des fréquences 
optiques avec des peignes laser fs

Horloges à réseaux optiques 
d’atomes neutres

Horloges à ions

 Nbre important d’atomes (S/B)



 
Contrôle du déplacement dû au 

piégeage optique ( longueur d’onde 
magique)



 
Petit nombre d’ion(s) (S/B faible)



 
Bon contrôle des champs 

piégeants et de l’environnement

Au-delà des horloges micro-ondes : 
les horloges optiques
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Evolution des performances

1 ps @ 1 jour  =  1 s @ 3 GYr
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Io n  / A to m  

 
C lo c k  

tra n s it io n  

 
   

n m  

 
E s t im a te d  s y s . 

F re q . u n c e rt . 
2 7 A l +  io n  1S 0  –  3P 0 2 6 7  9 x1 0 -1 8  
1 9 9H g + io n  2S 1 /2  –  2D 5 /2  2 8 2  2 x1 0 -1 7  
8 7S r  in   
la t t ic e  

1S 0  –  3P 0 6 9 8  1 .6 x1 0 -1 6  

1 7 1Y b  in   
la t t ic e  

1S 0  –  3P 0 5 7 8  3 .4 x1 0 -1 6  

 

1 7 1Y b + io n  2S 1 /2  –  2D 3 /2
 4 3 6  4 .5 x1 0 -1 6  

4 0C a +   io n  2S 1 /2  –  2D 5 /2
 7 2 9  2 .4 x1 0 -1 5  

8 8S r+   io n  2S 1 /2  –  2D 5 /2  6 7 4  3 .8 x1 0 -1 5  
4 0C a   a to m  1S 0  –  3P 1 6 5 7  7 .5 x1 0 -1 5  
1 7 1Y b + io n  2S 1 /2  –  2F 7 /2

 4 6 7  1 .8 x1 0 -1 4  
1 1 5 In +  io n  1S 0  –  3P 0 2 3 7  1 .8 x1 0 -1 3  
1 9 9 ,2 0 1 H g  in  
la t t ic e  

1S 0  –  3P 0 2 6 6   

Les meilleures horloges optiques
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 Horloges optiques dans l’espace :

Meilleur contrôle de l’environnement, des vibrations  

Connaissance du potentiel de gravitation (10-18  1 cm)

 Transitions nucléaires (229Th @ 160 nm): 

Meilleure immunité aux champs e-m externes

Intérêt de ces transitions pour les tests de 
physique fondamentale

Sr lattice clock

Sr+ ion clock

Le futur des horloges optiques
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Transfert de temps et/ou de fréquence

Deux types de transferts entre horloges distantes :



 
Transfert de fréquence (syntonisation)
Comparaisons de fréquence, tests de physique fondamentale, 
étalonnage en fréquence des échelles de temps atomique, géodésie 
relativiste, etc…)

 repose sur la stabilité en temps du lien



 
Transfert de temps (synchronisation)
(construction d’échelles de temps atomique, télémétrie une voie, etc…)

 repose sur la stabilité en temps du lien et sur la calibration 
absolue des délais (« exactitude en temps »)
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Effets affectant le transfert de T / F

Instrument spatial

Instrument sol

Point de référence

troposphère

V

ionosphère

Multi-trajets

Point de référence

Retard troposphérique (température, 
humidité) 

Délai ionosphérique (contenu 
électronique total, varie comme 1/f2 )

Multi-trajets (distance et reflectivité 
des réflecteurs parasites)

Effets instrumentaux (amplitude et 
fréquence des signaux, effets 
géométriques d’antennes, …) 

Effets relativistes : effet Doppler du 
1er & 2nd ordre, effet Sagnac, 
décalage gravitationnel (positions et 
vitesses relatives des horloges)
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Types de mesures



 
Signaux pulsés

 Datation des instants d’émission et de 
réception d’impulsions



 
Signaux continus

 Mesure du déphasage / différence de 
fréquence entre la porteuse reçue et le 
signal de référence local 

 Mesure du déphasage entre le code 
pseudo aléatoire reçu et le code local
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Comment améliorer les performances d’un 
transfert de temps

Stabilité en temps :



 
Mesure plus précise de la différence de phase :
 augmentation de la fréquence de la porteuse
 augmentation de la fréquence du code pseudo-aléatoire



 
Correction des fluctuations des retards de propagation 
(distance géométrique, troposphère, ionosphère) :
 très bonne connaissance des positions des deux horloges (orbitographie) 
 configuration « 2 voies » (aller-retour)
 modèle atmosphérique plus précis 
 fonctionnement multi-fréquences pour la détermination du contenu 
électronique total

« Exactitude » en temps :

Meilleure calibration des délais de propagation :
 modèle atmosphérique plus précis
 meilleure calibration instrumentale, stations transportables
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Transferts T/F avec des porteuses micro-ondes

Technique Performance Commentaires

GNSS 1 voie
Multi-fréq.
1 GHz
1 MChip/s

Bruit en temps < 100 ps
Comparaison de fréq. < 10-15 @ 1 j
« Exactitude » en temps : qq ns

Gain avec les combinaisons 
GPS, GALILEO, etc…

TWSTFT
« code »
(satellite 

géo)

2 voies
Mono-fréq.
10 GHz
10 MChip/s

Time noise < 100 ps
Comparaison de fréq. < 10-15 @ 1 j
« Exactitude » en temps : 1 ns

Uniquement pour les 
comparaisons d’horloges sol 
en vue commune
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Performances des transferts / horloges

Date

In
ce

rt
itu

de
 re

la
tiv

e 
de

 fr
éq

ue
nc

e

SI « atomic » definition 
of the second

Cold atom
fountains

Optical clocks

fs combs

Performances 
(@ 1day) des 
techniques micro- 
ondes actuelles 
(GNSS, TWSTFT 
code)10-17  1 ps @ 1 day



28
Conférence du Bureau des Longitudes, 1er février 2012

Transferts T/F avec des porteuses micro-ondes

Technique Performance Commentaires

GNSS 1 voie
Multi-fréq.
1 GHz
1 MChip/s

Bruit en temps < 100 ps
Comparaison de fréq. < 10-15 @ 1 j
« Exactitude » en temps : qq ns

Gain avec les combinaisons 
GPS, GALILEO, etc…

TWSTFT
« code »
(satellite 

géo)

2 voies
Mono-fréq.
10 GHz
10 MChip/s

Time noise < 100 ps
Comparaison de fréq. < 10-15 @ 1 j
« Exactitude » en temps : 1 ns

Uniquement pour les 
comparaisons d’horloges sol 
en vue commune

TWSTFT
« phase »
(satellite 

géo)

2 voies
Mono-fréq.
10 GHz
10 MChip/s

Bruit en temps : 1 ps
Compar. de fréq 

 

qq 10-17 @ 1 j
« Exactitude » en temps < 1 ns

Uniquement pour les 
comparaisons d’horloges sol 
en vues communes

ACES / MWL
(on ISS)

(2 voies ;
Multi- 

fréquences)

2 voies
Multi-fréq.
10 GHz
100 MChip/s

Bruit en temps  < 1 ps
Compar. de fréq 

 

qq 10-17 @ 1 j
« Exactitude » en temps 

 

100 ps

Comparaisons d’horloges sol 
en vues communes et non- 
communes (vol sur ISS à 
partir de 2015)
Seul lien 2 voie permettant de 
déterminer le CET
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Liens optiques pulsés
(T2L2 sur Jason 2 et ELT pour ACES sur ISS)

- Lien laser pulsé 2 voies

- Datation des impulsions au sol et dans 
l’espace

- Stabilité en temps ~ 1 ps

- Exactitude en temps < 100 ps

- Comparaisons de fontaines à atomes froids 
en vue commune entre l’OP et l’OCA
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Liens optiques cohérents
 Propagation libre

- Lien laser continu 2 voies

- Mesure de la phase de la porteuse optique (300 THz) à chaque extrémité

- Stabilité en temps ~ 10 - 100 fs

- Comparaisons de fréq. ~ 10-17 @ 1000s, 10-18 @ 1day

- Exactitude en temps : ??? 

Problèmes des techniques optiques en propagation libre :

 Requièrent des stations laser spécifiques

 Ne fonctionnent pas par tous les temps
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- Lien laser continu 2 voies

- Mesure de la phase de la porteuse optique (200 THz) à chaque extrémité

- Utilisation d’une fibre dédiée ou d’un canal dédié d’un réseau internet 
existant comme RENATER  Solution développée en France et déploiement 
national grâce à l’équipement d’excellence REFIMEVE

- Stabilité en temps ~ 10 - 100 fs

- Comparaisons de fréq. ~ 10-18 @ 104 s ;  10-19 @ 1day for ~ 500 km

- Exactitude en temps : qqs centaines de ps (préliminaire)

Liens optiques cohérents
 Propagation guidée dans une fibre
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• JILA-NIST (USA) : optical carrier phase, frequency comb transfer

• SYRTE - LPL (Fr) microwave, optical carrier phase

• PTB-MPQ-Hanover (Germany) 900 km optical phase

• NICT, NMIJ, UT (Japan) optical carrier phase & microwave

• NPL (GB) frequency comb, optical carrier phase

• NIM, SIOM Shangai (China) microwave optical link 

• INRIM (Italy)  optical carrier phase

• UWA,NMI (Australia) optical carrier phase & microwave

• Poland-Germany fibre link

Développements de liens fibrés
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France

700km

900km
Amsterdam

Bordeaux

Vers un réseau fibré métrologique en Europe ?
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Conclusions

 Améliorations très rapides des horloges atomiques : grâce aux méthodes 
optiques, des incertitudes de fréquences au niveau de 10-18 devraient être 
atteintes au cours de la prochaine décennie

 Bonne complémentarité et synergie entre les développements pour les 
applications sol et spatiales

 Développements en parallèle de nouveaux concepts instrumentaux (sous- 
systèmes ou instruments dérivés, …) utilisés pour d’autres applications 
(détection des ondes de gravitation, capteurs inertiels, géophysique, ...)

 Besoin de poursuivre les efforts de développements et déploiement de 
techniques de transfert de T/F pour atteindre des bruits sub-picoseconde (10-18 

en fréquence) en combinant des méthodes optiques / micro-onde en 
propagation libre / guidée avec des applications variées : comparaisons 
d’horloges sol et/ou spatiales, vols en formation, constellations GNSS 
autonomes.
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